【京大文系数学対策】二次試験で6割を取るため勉強法

受験

おはようございます、京大生ブロガーのマッケンです。

今回は京大の文系数学対策についてお話しします。

 

文系で京大を目指している方にとって、二次試験の数学は1つの鬼門では

ないでしょうか?

京大の数学は難しいと感じるかもしれませんが、実はそうでもないです。

 

しっかりと対策していれば合格点を取るだけなら、十分に可能です。

 

特に、今回この記事を読んでほしいのは、数学ができるのは「理系的才能」がある人

だと思っている人です。

 

数学は才能ではありません、経験です。

過去に解いた問題のパターンがどれほど体に染み付いているかが、問題を解けるかの鍵に

なります。

 

京大二次試験の数学に対応できるようになるためのステップは大きく3つに分かれます。

例題暗記、演習問題暗記、演習の3つです。

 

順番に私が使った参考書や、その使い方、具体的な勉強法を紹介していきます。

 

ステップ1 例題暗記

まずは基本となる例題を暗記するステップです

 

みなさんはこんな経験ありませんか?

数学ができる人に、この問題がわからないと質問したら、「これは〇〇の定理を使って、変形したらできるよ〜」と返ってくる。

なるほど、確かに問題が解ける。

でも、なぜこの問題で〇〇の定理を使ったらすぐに解けると分かるのかが分からない。

 

それそれ!!なぜその解き方を使うとわかるんだ!と共感される人も多いのではないでしょうか?

 

「数学ができる」彼らは、何も才能があるからすぐに解き方がわかる訳ではありません。

彼らは問題を解きまくっているから、問題に対する解法を暗記していて、条件反射できるだけです。

 

わかりやすくいうと、三角形の面積の求め方がわからないと言われて、底辺×高さ÷2って

すぐに答えられますよね?

でもそれは公式じゃないの?と言われるかもしれませんが、

同じ三角形を2つ合わせると長方形になる。長方形は縦×横で面積が求められる。

 

求める三角形はその1/2、だからその「公式」になるんです。

でもいちいちそんなこと考えませんよね?

それが条件反射です。

 

しっかりと、量をやっている人だと、問題を一目見た瞬間に解放がいくつか思い浮かび、条件を見た瞬間に、1つあるいは2つくらいには絞れます。

これは確実に才能の類ではありません。

 

不等式の問題と言われれば、コーシーシュワルツか、相加相乗、二項定理のどれかかな?と慣れていれば問題の種類を聞いただけで頻出の解法が頭に浮かびます。

 

このレベルに到達するために必要なのは、頻出例題を解きまくり暗記することです。

私がこのステップで使ったのはチャートです。

赤チャート、青チャート、黄チャートなど本屋に行けばありますよね?

 

学校で買わされる人も多いでしょう。

学校で買った人はそのチャートでいいですし、買ってない人は青チャートを買いましょう。

 

チャートの使い方ですが、あくまで例題の暗記に使うので、後ろの方にのってるような演習問題は原則とかなくていいです。

もし、例題を覚えてきて数学が楽しくなり、難しい問題にチャレンジしたいとなれば解いてもらって構いません。

 

その状態になっていることこそ理想ですから。

逆にいうと、自分から解きたいとならなければ解かないでください。

 

まず、各ページに1つ例題がのっているはずです。

青チャートにのっている例題を全て解きます。

 

この際分からなければすぐに飛ばしてください。

考えることに意味はありません。

 

そして、

IAからⅡBまで全ての例題を解いていって、全て終わったらまた始めからやります。

見た瞬間に解法が頭の中で思いつく問題があれば、その例題にはバツをつけて消しましょう。(解ける問題と解けない問題を区別するためです。)

 

そうして、チャートにのっている問題全てにバツがつくまでやり続けます。

この作業が終わると、もうかなり「数学ができる」ようになっていると思います

それこそ模試でも偏差値が60は超えるでしょう。

 

というより、チャートの例題をやり込んで、暗記していると、神大ぐらいのレベルの国公立大学の数学なら平均点から合格点ぐらいを取れる可能性もあります。

それぐらいに基礎が重要なんです。

 

簡単に説明しましたが、この作業かなり途中で心が折れます。(なかには難しい例題もありますからね)

2〜4ヶ月を目標にやりましょう。

 

まだ、習っていない範囲がある人は、習っていないとかしょうもない言い訳をしないで自分で教科書なり参考書なりを読んで理解しましょう。

それで読んでいて分からないところがあれば先生や友達に聞きましょう。

 

厳しいことを言うようですが、早期に数学が完成していることは文系受験において圧倒的なアドバンテージです。

逆に、数学ができないことは致命的な欠陥です。

 

京大の文系学部は数学で合否が決まると言っても過言ではありません。

それくらいに数学は点数が開きます。

 

チャートの例題を完璧に暗記した頃になると、あなたの強い武器になっています。

 

でも、武器って使えないと意味ないですよね?

ゲームでも、とても強い武器を持っていても、そのキャラを動かすのが下手だと結局ザコいですよね。

 

銃を持っていても、打ち方がわからなかったら、それは何も持っていないのと同じです。

武器の使い方を覚える。それがステップ2です。

 

ステップ2 演習問題暗記

得た武器を使えるようにし、使い方を体に染み込ませる段階です。

銃の撃ち方、剣の切り方、体術の使い方、みたいなものです。

 

チャートの例題で得たのは武器単体です。

まずは単体の使い方を身につけていきましょう。

 

ここで使うのは少し進んだレベルの問題です。

オススメは大学への数学 一対一対応の演習です

この問題集はチャート例題をよりかなり難しめになっています。

 

一対一対応の演習の例題は難しいですが、解法が効率的で、すごく美しい解法に

なっています。

 

この問題集で身につくのは、正しい時に正しい武器を使う方法です。

数学の問題では、Aの解法でも、Bの解法でも解けるけど、Aで解いた方が速い

という問題があります。

 

その時にAとB両方を比較してAの方が速いと見抜いた上でAを選んで解けるように

する段階です。

 

銃で撃てば一発で死ぬ相手に、剣で10回斬りつけるのは無駄ですよね。

 

入試でもこういった問題はよく出題されます。

一瞬で解ける解法を思いつけばいいですが、思いつかない場合もあります。

その時にごり押しで解けるBも知っておかなければなりませんよ。

 

一対一対応の演習でやってもらいたいのは基本的にはチャートと同じです。

例題を周回していって、解けない問題がなくなるまでやりましょう。

ただこの際に、なぜこの解法を使うべきなのかを意識して解きましょう。

 

ただ、さっきも言ったように、数学の問題と解く時には、2つ以上の解法を考えましょう。

そして最適な1つを選びましょう。

 

ですが、ここで注意が必要になります。

Aだと2分で、Bだと10分かかります。

もちろんAで解きたい問題ですが、Aを思いつくのに10分かかっては意味ないですよね。

 

それなら、Aが思い浮かばなそうなら、早めにBに切り替えてゴリ押した方が早いです。

ごり押しで解くというのも頭に入れておきましょう。

 

銃を使えばすぐに倒せることに気づかないなら、手に持っている剣で切りまくったほうが

速いということです。

 

このパターンで特に多いのが、綺麗に変形すれば簡単な計算だけで一瞬で解ける問題だけど、煩雑な計算をゴリゴリ解けば解けるという問題です。

 

計算が速い人なら後者で解いても対して時間が変わらないということもあるので、思いついた方で解いてしまってもいいです。

 

まあ、そういった取捨選択も含めて一対一対応の演習で身につけましょう。

そして、武器単体をいつ使うか、どのように使うかが分かれば、次は2つ以上の武器を

複合して使っていきます。

ゲームでいうなら連続技みたいな感じです。それがステップ3です。

ステップ3 演習

このステップでは実際に入試レベルの問題を解く練習をします。

入試の難しい問題は、一対一対応までの例題の解法を複合して解くような問題が頻出です。

 

このステップでオススメなのは「文系数学の良問プラチカ」です。

先に言っておきますがこの問題集はかなり難しいです。

阪大未満の大学であれば、この問題集には手を触れないでください。

 

挫折するだけだし、もはや合否には影響ないので。

 

阪大、一橋、京大、東大レベルを志望する人だけプラチカを解いてください。

この問題集では、わからなくてもすぐに答えを見ずに10分くらいは考えましょう。

 

難しい問題を考えて解法を捻り出せた時に初めて、脳でシナプス結合ができます。

その思考の感覚が脳に記憶されるのです。

 

ですが、10分経ったら答えをみてなぜその解法を使うのか、どのようにその問題を解いて

いるのかを理解しましょう。

なぜ10分かというと、私の体験上、10分以上考えても分からない問題はそれ以上

考えても分からないからです。

 

プラチカはとても難しいですが、何週もして全部解けるようにしましょう。

入試問題を解く練習として解くんだから、問題を覚える必要なくね?と思うかも

しれませんが、プラチカにのっている問題はただ難しい問題ではなく、名前の通り、

入試でも頻出な「良問」だからです。

 

入試の過去問や模試の問題を解いていて、「あ、これはプラチカの何番の問題だ!」

となることが少なくありません。

 

入試本番でも同じ解法を使う問題が出る確率は少なくありません。

だから少なくともプラチカの問題は記憶の片隅に入れておきましょう。

 

まとめ

プラチカの段階までクリアしたら、あとは京大の過去問を解いていきましょう。

 

流石に入試問題で同じ問題が出ることはありませんが、出題のパターンはわかってくると思います。

過去問は一年分(5問)をまとめて解きましょう。

 

解いているとわかってきますが、京大の出題傾向は毎年同じです。

第1問は、ほとんどが積分の問題、第2問は図形、特に三角関数を使うような問題、第3問は、数列か空間ベクトル、第4問、第5問は整数と確率。

 

大問間での入れ替わりはありますが、ほとんどが上記の出題範囲です。

出る問題があらかじめわかっているので、頻出の範囲の問題を解きまくるといいでしょう。

 

数学は量をやれば必ずできるようになります。

才能なんて言葉で言い訳するのはやめましょう。

受験数学ができないのはあなたに才能がないからではなく努力が足りないからです。

(東大数学でもです。)

 

私が今回説明した方法で、圧倒的な練習量を積んでもらえば、必ずできるようになります。

 

数学で点が取れるようになれば京大には受かったも同然。

最後まで諦めず頑張ってください、応援しています!


コメント